Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes.

نویسندگان

  • Yuling Wang
  • Sandeep Ravindranath
  • Joseph Irudayaraj
چکیده

A rapid and sensitive method was developed here for separation and detection of multiple pathogens in food matrix by magnetic surface-enhanced Raman scattering (SERS) nanoprobes. Silica-coated magnetic probes (MNPs@SiO(2)) of ~100 nm in diameter were first prepared via the reverse microemulsion method using cetyltrimethylammonium bromide as a surfactant and tetraethyl orthosilicate as the silica precursor. The as-prepared MNPs@SiO(2) were functionalized with specific pathogen antibodies to first capture threat agents directly from a food matrix followed by detection using an optical approach enabled by SERS. In this scheme, pathogens were first immuno-magnetically captured with MNPs@SiO(2), and pathogen-specific SERS probes (gold nanoparticles integrated with a Raman reporter) were functionalized with corresponding antibodies to allow the formation of a sandwich assay to complete the sensor module for the detection of multiple pathogens in selected food matrices, just changing the kinds of Raman reporters on SERS probes. Here, up to two key pathogens, Salmonella enterica serovar Typhimurium and Staphylococcus aureus, were selected as a model to illustrate the probability of this scheme for multiple pathogens detection. The lowest cell concentration detected in spinach solution was 10(3) CFU/mL. A blind test conducted in peanut butter validated the limit of detection as 10(3) CFU/mL with high specificity, demonstrating the potential of this approach in complex matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Use of DNA Aptamer-Magnetic Bead Separation-PCR Assay for Salmonella Detection in Food

Background: Salmonella is one of the most common food-borne pathogens that can cause illness. In this study, the sensitivity and the specificity of Aptamer-Magnetic bead Separation-Polymerase Chain Reaction (AMS-PCR) method were determined for Salmonella spp. detection. Methods: Different concentrations of Salmonella enterica were mixed with streptavidin-magnetic beads coated with biotinylated...

متن کامل

Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6an00890a

Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag-Magnetite and Au-Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribu...

متن کامل

Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

We report magnetic silver nanoshells (M-AgNSs) that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe₃O₄ nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection...

متن کامل

Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively cap...

متن کامل

Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier

Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 399 3  شماره 

صفحات  -

تاریخ انتشار 2011